DO NOW – On the back of this packet

Name

LO: I can solve equations in terms of unspecified constants (letters instead of numbers).

pencil/pen

Solving equations with numeric or letter constants use the same process

Exercise #1: Solve each of the following problems for the value of x. In (b), write your answer in terms of the unspecified constant: (a) 5x+3=33 (b) ax+b=c

Use the process from lesson 1.2B by listing operations and inverse operations and then solving

Equation	Operations (wrapping)	Inverse operations (unwrapping)	Solve the equation
А			
5x + 3 = 33			
В			
ax + b = c			

Solving equations with numeric or letter constants use the same process

Exercise #2: Solve the following two equations. In letter (b), leave your answer in terms of the constants a, b, c and d.

Equation	Operations (wrapping)	Inverse operations (unwrapping)	Solve the equation
A			
$\frac{x+5}{2} - 7 = 3$			
В			
$\frac{x+a}{b} - c = d$			
D			

1

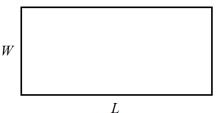
Exercise #3: When 2(x-h)+k=8 is solved for x in terms of h and k, its solution is which of the following? Show the algebraic manipulations you used to get your answer.

(1)
$$4+h-k$$
 (3) $k-\frac{h}{2}+8$

(2)
$$h+4-\frac{k}{2}$$
 (4) $4-h+k$

Equation	Operations (wrapping)	Inverse operations (unwrapping)	Solve the equation
A $2(x-h)+k=8$			

(4) Applications for solving equations with letter constants


Many times this technique is used when we want to rearrange a formula to solve for a quantity of interest.

Exercise #4: For a rectangle, the **perimeter**, *P*, can be found if the two dimensions of length, *L*, and width, *W*, are known.

- (a) If a rectangle has a length of 12 inches and a width of 5 inches, what is the value of its perimeter? Include units.
- (b) Write a formula for the perimeter, P, in terms of L and W.
- (c) Rearrange this formula so that it "solves" for the length, L. Determine the value of L when P = 20 and W = 4.

pencil/pen

pencil/pen

(3) Solving equations with letter constants when x is on both sides

pencil/pen

There is one last complication that we need to look at that is often challenging for students at all levels. Let's take a look at this in the next problem.

Exercise #5: Consider the equation ax + b = cx + d. We'd like to solve this equation for x. Let's start with the situation where we know the values of a, b, c and d.

(a) Solve: 8x + 1 = 5x + 22 (b) Now solve: ax + b = cx + d

(4) Solving equations with letter constants when x is on both sides

Exercise #6: Which of the following solves the equation ax - k = 3(x+h) for x in terms of a, k, and h. Show the manipulations to find your answer.

(1) $\frac{3h+k}{2}$	$(3) \frac{k+3h}{a+3}$
$(1) \overline{a-3}$	$(3) \overline{a+3}$

(2)
$$\frac{3a+k}{h-1}$$
 (4)
$$\frac{h+3}{a+k}$$

(4) Exit Ticket

ON THE LAST PAGE

pen or

Homework BRING BACK SIGNATURE SHEET SIGNED AND

pencil

- FLUENCY
- 1. When $\frac{3(x-k)}{w} = 4$ is solved for x in terms of w and k, its solution is which of the following? Show the algebraic manipulations you used to get your answer.
 - (1) $\frac{4}{3}w + k$ (3) $k \frac{4}{3}w$ (2) $k - \frac{3w}{4}$ (4) $\frac{4}{3} + w - k$
- 2. Solve the following equations for x. It may help to make up an equation with numbers and solve it to the side to make sure you are not making any mistakes.

(a)
$$a(x+b)-c=d$$
 (b) $\frac{e(x+c)}{b}=2$

(c)
$$rx + qx - d = gc$$
 (d) $2ax - b = cx + d$

(e)
$$zx = 5g(2x-c)$$
 (f) $\frac{dx}{b} + \frac{cx}{d} = e$

CLASS SUPPL	Y LIST							
Pencil	Eraser	Compass	Ruler	Highlighters	Pens	Markers	Scissors	
Glue	Dr	y Erase Mark	er	Sheet Protector				

Exit Ticket	Name	Date	_Per

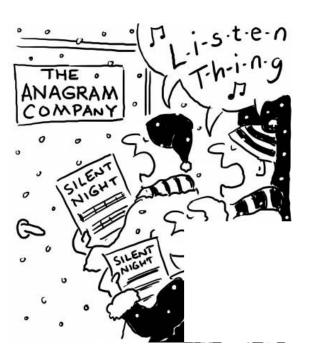
Exit Ticket

(1) The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following:

(a) Solve the equation for the indicated variable (x):

$$A = \frac{x+y}{2} \quad \text{for } \boldsymbol{x}$$

(b) Solve the equation for the indicated variable (x):


$$\frac{3ax-n}{5} = -4$$
, for x.

6			_	
DO NOW	Name	Date	Per	1.4B
(1) Solve O	NE of the equations below. List the "operations	and the "inverse or	perations" if you have trouble	getting started

or get stuck.

(a) -3(4r-8) = -36 (b) 6 = -3(x+2)

(2) An anagram is a rearrangement of letters. Describe what is supposed to make you smile in the cartoon.

Hint: What are the singers reading and singing?